Spiral galaxy

An example of a spiral galaxy, the Pinwheel Galaxy (also known as Messier 101 or NGC 5457)

A spiral galaxy is a certain kind of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae[1] and, as such, forms part of the Hubble sequence. Spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Spiral galaxies are named for the (usually two-armed) spiral structures that extend from the center into the disk. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disk because of the young, hot OB stars that inhabit them. Roughly half of all spirals are observed to have an additional component in the form of a bar-like structure, extending from the central bulge, at the ends of which the spiral arms begin. Our own Milky Way has recently (in the 1990s) been confirmed to be a barred spiral, although the bar itself is difficult to observe from our position within the Galactic disk.[2] The most convincing evidence for its existence comes from a recent survey, performed by the Spitzer Space Telescope, of stars in the Galactic center.[3]

Together with irregulars, spiral galaxies make up approximately 60% of galaxies in the local Universe.[4] They are mostly found in low-density regions and are rare in the centers of galaxy clusters.[5]

Contents

Structure

Spiral galaxies consist of four distinct components:

The relative importance, in terms of mass, brightness and size, of the different components varies from galaxy to galaxy.

Spiral arms

Spiral arms are regions of stars that extend from the center of spiral and barred spiral galaxies. These long, thin regions resemble a spiral and thus give spiral galaxies their name. Naturally, different classifications of spiral galaxies have distinct arm-structures. Sc and SBc galaxies, for instance, have very "loose" arms, whereas Sa and SBa galaxies tightly wrapped arms (with reference to the Hubble sequence). Either way, spiral arms contain a great many young, blue stars (due to the high mass density and the high rate of star formation), which make the arms so remarkable.

Galactic bulge

A bulge is a huge, tightly packed group of stars. The term commonly refers to the central group of stars found in most spiral galaxies.

Using the Hubble classification, the bulge of Sa galaxies is usually composed of population II stars, that is old, red stars with low metal content. Further, the bulge of Sa and SBa galaxies tends to be large. In contrast, the bulges of Sc and SBc galaxies are a great deal lesser, and are composed of young, blue, Population I stars. Some bulges have similar properties to those of elliptical galaxies (scaled down to lower mass and luminosity), and others simply appear as higher density centers of disks, with properties similar to disk galaxies.

Many bulges are thought to host a supermassive black hole at their center. Such black holes have never been directly observed, but many indirect proofs exist. In our own galaxy, for instance, the object called Sagittarius A* is believed to be a supermassive black hole. There is a tight correlation between the mass of the black hole and the velocity dispersion of the stars in the bulge, the M-sigma relation.

Galactic spheroid

The bulk of the stars in a spiral galaxy are located either close to a single plane (the Galactic plane) in more or less conventional circular orbits around the center of the galaxy (the galactic centre), or in a spheroidal galactic bulge around the galactic core.

However, some stars inhabit a spheroidal halo or galactic spheroid. The orbital behaviour of these stars is disputed, but they may describe retrograde and/or highly inclined orbits, or not move in regular orbits at all. Halo stars may be acquired from small galaxies which fall into and merge with the spiral galaxy—for example, the Sagittarius Dwarf Elliptical Galaxy is in the process of merging with the Milky Way and observations show that some stars in the halo of the Milky Way have been acquired from it.

Unlike the galactic disc, the halo seems to be free of dust, and in further contrast, stars in the galactic halo are of Population II, much older and with much lower metallicity than their Population I cousins in the galactic disc (but similar to those in the galactic bulge). The galactic halo also contains many globular clusters.

The motion of halo stars does bring them through the disc on occasion, and a number of small red dwarf stars close to the Sun are thought to belong to the galactic halo, for example Kapteyn's Star and Groombridge 1830. Due to their irregular movement around the centre of the galaxy—if they do so at all—these stars often display unusually high proper motion.

Origin of the spiral structure

The pioneer of studies of the rotation of the Galaxy and the formation of the spiral arms was Bertil Lindblad in 1925. He realised that the idea of stars arranged permanently in a spiral shape was untenable due to the "winding dilemma". Since the angular speed of rotation of the galactic disk varies with distance from the centre of the galaxy (via a standard solar system type of gravitational model), a radial arm (like a spoke) would quickly become curved as the galaxy rotates. The arm would, after a few galactic rotations, become increasingly curved and wind around the galaxy ever tighter. This is called the winding problem. Measurements in the late 1960s showed that the orbital velocity of stars in spiral galaxies with respect to their distance from the galactic center is indeed higher than expected from Newtonian dynamics but still cannot explain the stability of the spiral structure.

There are two leading hypotheses or models for the spiral structures of galaxies:

These different hypotheses do not have to be mutually exclusive, as they may explain different types of spiral arms.

Density waves model

Bertil Lindblad proposed that the arms represent regions of enhanced density (density waves) that rotate more slowly than the galaxy’s stars and gas. As gas enters a density wave, it gets squeezed and makes new stars, some of which are short-lived blue stars that light the arms.

Explanation of spiral galaxy arms.

This idea was developed into density wave theory by C. C. Lin and Frank Shu in 1964.[6] They suggested that the spiral arms were manifestations of spiral density waves, attempting to explain the large-scale structure of spirals in terms of a small-amplitude wave propagating with fixed angular velocity, that revolves around the galaxy at a speed different from that of the galaxy's gas and stars.

Historical theory of Lin and Shu

The first acceptable theory for the spiral structure was devised by C. C. Lin and Frank Shu in 1964.

Star formation caused by density waves

The following hypotheses exist for star formation caused by density waves:

More young stars in spiral arms

The arms appear brighter because there are more young stars (hence more massive, bright stars). These massive, bright stars also die out quickly, which would leave just the (darker) background stellar distribution behind the waves, hence making the waves visible.

While stars, therefore, do not remain forever in the position that we now see them in, they also do not follow the arms. The arms simply appear to pass through the stars as the stars travel in their orbits.

Alignment of spin axis with cosmic voids

Recent results suggest that the orientation of the spin axis of spiral galaxies is not a chance result, but instead they are preferentially aligned along the surface of cosmic voids.[7] That is, spiral galaxies tend to be oriented at a high angle of inclination relative to the large-scale structure of the surroundings. They have been described as lining up like "beads on a string," with their axis of rotation following the filaments around the edges of the voids.[8]

Spiral nebula

“Spiral nebula” is an old term for a spiral galaxy. Until the early 20th century, most astronomers believed that objects like the Whirlpool Galaxy were just one more form of nebula that were within our own Milky Way galaxy. The idea that they might instead be other galaxies, independent of the Milky Way, was the subject of The Great Debate of 1920, between Heber Curtis of Lick Observatory and Harlow Shapley of Mt. Wilson Observatory. In 1926, Edwin Hubble[9] observed Cepheid variables in several spiral nebulae, including the Andromeda Galaxy, proving that they are, in fact, entire galaxies outside our own. The term “spiral nebula” has since fallen into disuse.

The Milky Way

The Milky Way was once considered an ordinary spiral galaxy. Astronomers first began to suspect that the Milky Way is a barred spiral galaxy in the 1990s.[10] Their suspicions were confirmed by the Spitzer Space Telescope observations in 2005[11] which showed the galaxy's central bar to be larger than previously suspected.

Famous examples

See also

Components

  • Galactic disk
  • Bulge (astronomy)
  • Galactic halo
  • Galactic corona

Classification

  • Dwarf galaxy
  • Dwarf elliptical galaxy
  • Dwarf spheroidal galaxy
  • Elliptical galaxy
  • Grand design spiral galaxy
  • Intermediate spiral galaxy
  • Irregular galaxy
  • Lenticular galaxy
  • Ring galaxy
  • Starburst galaxy
  • Seyfert galaxy
  • Unbarred spiral galaxy

Other

  • List of galaxies
  • List of nearest galaxies
  • Timeline of galaxies, clusters of galaxies, and large scale structure
  • Tully-Fisher relation

References

  1. Hubble, E. P. (1936). The Realm of the Nebulae. New Haven: Yale University Press. ISBN 0300025009. 
  2. Ripples in a Galactic Pond, Scientific American, October 2005
  3. Benjamin, R. A. et al.; Churchwell, E.; Babler, B. L.; Indebetouw, R.; Meade, M. R.; Whitney, B. A.; Watson, C.; Wolfire, M. G. et al. (September 2005). "First GLIMPSE Results on the Stellar Structure of the Galaxy.". The Astrophysical Journal Letters 630 (2): L149–L152. doi:10.1086/491785. http://www.journals.uchicago.edu/doi/full/10.1086/491785. Retrieved 2007-09-21. 
  4. Loveday, J. (February 1996). "The APM Bright Galaxy Catalogue.". Monthly Notices of the Royal Astronomical Society 278 (4): 1025–1048. http://articles.adsabs.harvard.edu/full/1996MNRAS.278.1025L. Retrieved 2007-09-15. 
  5. Dressler, A. (March 1980). accessdate= 2007-09-15 "Galaxy morphology in rich clusters — Implications for the formation and evolution of galaxies.". The Astrophysical Journal 236: 351–365. doi:10.1086/157753. http://articles.adsabs.harvard.edu/full/1980ApJ...236..351D accessdate= 2007-09-15. 
  6. Lin, C. C.; Shu, F. H. (August 1964). "On the spiral structure of disk galaxies.". The Astrophysical Journal 140: 646–655. doi:10.1086/147955. http://articles.adsabs.harvard.edu/full/1964ApJ...140..646L. Retrieved 2007-09-26. 
  7. Trujillo, I.; Carretero, C.; Patiri, S.G. (2006). "Detection of the Effect of Cosmological Large-Scale Structure on the Orientation of Galaxies". The Astrophysical Journal 640 (2): L111–L114. doi:10.1086/503548. http://adsabs.harvard.edu/abs/2005astro.ph.11680T. 
  8. Alder, Robert (2006). "Galaxies like necklace beads". Astronomy magazine. http://www.astronomy.com/asy/default.aspx?c=a&id=4215. Retrieved 2006-08-10. 
  9. Hubble, E. P. (May 1926). "A spiral nebula as a stellar system: Messier 33.". The Astrophysical Journal 63: 236–274. doi:10.1086/142976. http://articles.adsabs.harvard.edu/full/1926ApJ....63..236H. Retrieved 2007-09-21. 
  10. Chen, W.; Gehrels, N.; Diehl, R.; Hartmann, D. (1996). "On the spiral arm interpretation of COMPTEL ^26^Al map features". Space Science Reviews 120: 315–316. http://adsabs.harvard.edu/abs/1996A&AS..120C.315C. Retrieved 2007-03-14. 
  11. McKee, Maggie (August 16, 2005). "Bar at Milky Way's heart revealed". New Scientist. http://www.newscientist.com/article/dn7854--bar-at-milky-ways-heart-revealed.html. Retrieved 2009-06-17. 

External links